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• To test this hypothesis, we measured ~ 500 fault slick-
enlines (example at right) along the SJF, which we map 
as a ~1 km wide distributed brittle fault zone with a 
20-m-thick fault core.

• We used kinematic inversions of these slickenline mea-
surements using FaultKin 7.5 (Allmendinger, 2016) to 
model pseudo fault-plane solutions (as lower hemi-
sphere stereonet projections) for the SJF and faults 
crosscutting overlying strata (e.g., Marrett & All-
mendinger, 1990).

• We mapped, collected kinematics data, and dated 
strata that are hypothesized to nonconformably overlie 
the SJF (e.g., Massey, 2005) to determine the timing of 
fault slip and di�erent kinematics on the SJF.
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Left-lateral brittle faulting on SW-NE 
to W-E striking faults including the SJF

Ductile shear zone

• Brittle left-lateral slip occurs on the SJF before the deposition of the Upper-Eocene / Lower Oligocene marine shelf sediments.

• Maximum shortening axes on left-lateral and oblique faults are compatible with SSW-NNE shortening on the Eocene Cowichan fold 
and thrust belt (CFTB). 

• Faults that cross-cut Upper Eocene - Lower Oligocene  Carmanah Group marine shelf sediments only indicate NW-SE and NE-SW exten-
sion indicating left-lateral slip ceased before marine sediment deposition.
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Oligocene: Left-lateral 
slip on the SJF ceases.
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• Subduction zone moves outboard of 
Siletzia (e.g., Wells et al., 2014)

• Deposition of marine shelf and slope  
sediments (Carmanah group) in the 
forearc (e.g., Garver and Brandon, 
1994).

• Extensional faulting in the Carmanah 
group during basin formation?
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• Paleogeography of northern Casca-
dia is poorly constrained but previ-
ous research suggests:

• Subduction of Kula / Farallon plates 
and underthrusting of trench sedi-
ments and pelagic sediments (e.g., 
Rusmore & Cowan,1986).

• Termination of Wrangellia south of 
this latitude may suggest an embay-
ment along subduction zone south 
of Wrangellia (e.g., Wyld et al., 2006). 
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• Eocene left-lateral slip on the SJF, related 
to the formation of the CFTB, is due to ac-
cretion of Siletzia as an indenter (e.g., John-
son & Acton, 2003; Wells et al., 2014; Nelson 
et al., 2017).

• NW along-strike reduction in crustal 
shortening recorded in CFTB (England and 
Calon, 1991), and Eocene oblique left-later-
al slip on the Devils Mountain fault (DF; 
Personius et al., 2014) and Leech River fault 
(LRF; Fairchild and Cowan, 1982), are con-
sistent with accretion of Siletzia indenter 
south of the SJF.
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Miocene to Modern:
Extensional faulting in 
Carmanah Group
• ~22° of post-Oligocene counterclock-
wise rotation of northern Cascadia (Fin-
ley, 2019).

• Counterclockwise rotation of southern 
Vancouver Island with respect to north-
ern Vancouver Island may have induced 
NW-SE extension along the west coast of 
Vancouver Island (e.g., Johnston & Acton, 
2003) resulting in normal faulting in the 
Carmanaha group.
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•  We mapped sequences of 
medium-coarse grained 
sandstone that non-con-
formably overlie the SJF.

• Channels, hummocky 
cross-strati�cation (right), 
and shell lag deposits are in-
dicative of a marine shelf 
depositional environment. CM-1-15

Grain size abbreviations; Cl: Clay;
Si: Silt; Fs: Fine sand; Ms: Medium 
sand; Cs: Coarse sand.

• Cibicides sp.  benthic foraminifer identi�ed in six samples across 
stratigraphic column (at right) showing sequence of fossiliferous 
�ne to coarse grained sandstone.

• Correlates with other faunal units overlying the SJF.

• These fauna indicate outer shelf depositional environment that 
shallows to inner neritic near top of section.

• 87Sr/86Sr isotope age of specimens in sample CM-1-15: 
34.3–33.3 Ma (late Eocene/early Oligocene boundary), which 
correleates with the lower Oligocene Carmanah Group (Oc) 
(Johns et al., 2012).
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• The San Juan fault (SJF) juxtaposes the Wrangellia terrane 
against the Paci�c (Pac.) Rim terrane in the northern Cascadia 
forearc (e.g. Massey, 2005).

• The SJF is proposed to have accommodated accretion of the 
Pac. Rim to Wrangellia via thrusting and/or right-lateral faulting 
(Johnson, 1984; Rusmore and Cowan,1985).

• It is then thought to have been reactivated as a left-lateral fault 
during Eocene accretion of Siletzia terrane (e.g., England and 
Calon ,1991).

• However, no direct observations of the SJF, its kinematics, or 
timing of slip have been published that con�rm the hypothesis 
that the SJF was reactivated during the Eocene terrane accre-
tion.


